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Introduction of Artificial Boundary Conditions
in the Spectral Moments Method
Elodie Bachelier, Gerard Poussigue, Pierre Borderies, and Claude Benoit

Abstract—The overall objective of this paper is to demonstrate
the ability of the spectral moments method, a new method in
electromagnetism, to incorporate absorbing boundary conditions.
This demonstration is done successfully with plane pulse propaga-
tion in free space, and through a comparison with finite-difference
time-domain (FDTD) results. The very good agreement of the
results leads to the conclusion that the spectral moments method
application for electromagnetic propagation and diffraction prob-
lems should be further investigated.

I. INTRODUCTION

T HIS letter deals with the application of a method called
“Spectral Moments Method” (SMM) to the simulation

of electromagnetic wave propagation and diffraction. This
method is new in electromagnetism; it is a mixed method
which works both in time and in frequency domain and
directly gives the result for all frequencies and any incident
pulse, and which can cope with very large computational
volumes. Previous works have shown the efficiency of this
method when applied to electromagnetic problems, but still
the implementation of absorbing boundary conditions (ABC’s)
had not been done in detail. This is the object of this paper.
After introducing the method in the first part, we present
ABC. Then, the results of the implementation in free space
and a comparison with finite-difference time-domain (FDTD)
are shown in the time domain.

II. THE SPECTRAL MOMENTS METHOD

This numerical method, developed first in condensed matter
physics [1], [2], was recently successfully applied to the
propagation simulation of acoustic waves in geophysics [3].
The mathematical basis of this method has been developed
by Benoit [4]. First applications concerning electromagnetic
waves propagation in anisotropic media was presented by
Lakhliai [5]. Diffraction by a circular and square cylinder has
recently been reported by Poussigue [6] and Chenouni [7].

In the SMM, the space variables only are sampled, and
getting the solution at any frequency requires only one com-
putation. It is based on determination of the exact Green
function of the system and is mathematically equivalent to
the Lanczos procedure, but much more general. The method
is widely developed in [4] and [5], so we will only succinctly
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describe the principle. The problem we want to solve at hand
is: assuming a dielectric media and an external source, what
is the value of the electric field and of the magnetic field
in a point at time ? After spatial discretization and a simple
change of variables, Maxwell’s equations can be expressed in
the following form:

where The discretization grating is composed of
cells, is a components vector representing the

components of the electric and magnetic fieldsand at each
node of the grid, and is a sparse matrix which corresponds
to the geometry of the problem. The size of is but in
practice it is never stored totally. is a source vector.
Let us introduce the Green matrix solution of

where is the identity matrix. After Fourier transform, we
obtain in the frequency domain

Then we can directly deduce the solution

The whole problem is then the computation of the Green
function which takes into account the boundary condi-
tions of the system. The Fourier transform of a Green function
between a polarized response at the node and a
polarized source in the node is given by the matrix element

We can prove that can be obtained from a
continued fraction expansion versusand the coefficients of
this expansion are directly calculated from the dynamic matrix

[2]. The problem is the convergence of this continued
fraction: if there is no conductivity, is real and symmetric,
and a mathematical result [8] ensures this convergence; but
if there is some conductivity, then is complex and no
longer symmetric. In that case, there is no theoretical result,
neither on the stability of the fraction coefficients nor on the
convergence of the fraction. Nevertheless, in order to study
diffraction problems with the SMM, it was really necessary to
know if ABC could be introduced in the method.
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Fig. 1. Incident pulse.

III. A BSORBING BOUNDARY CONDITIONS

A drawback of spatial discretization methods lies in the fact
that Maxwell’s equations have to be solved in a discretized
domain whose size needs to be limited for memory purposes.
Nevertheless, open problems involving theoretically boundless
space extension can be solved when applying special con-
ditions on the boundaries of the computational domain, in
order to absorb outgoing waves. Many ABC’s are available
in literature: perfectly matched layer method [9], Bayliss and
Turkel asymptotic operators method [10], etc.

For easy implementation, we use broadband Radar Absorb-
ing Material, which consists of an addition of absorbing layers
all around the truncated domain, and we terminate with a
metallic wall. Maxwell’s equations then become

where and are magnetic and electric conductivity, which
depends on position and are such as where is the
intrinsic impedance of the medium contiguous to the ABC.
We can easily show that these equations lead to the problem

treated above. The main difference
is that as we said in the previous section, is no longer
symmetric. Theory is then more complex [4], but it provides
the same result: the solution is given by
where elements can be obtained from a continued fraction
expansion.

Now we study the numerical influence of such a change in
the fraction coefficients stability, and the fraction convergence
in this case.

IV. RESULTS

The source (Fig. 1) we use is a Rayleigh-like plane pulse
defined as follow in the plane [11]:

Though all combinations of sources and detectors have been
treated (plane or point), results we present here concern near-
field detection, with a point source and a point receiver. We

Fig. 2. Computational domain.

Fig. 3. Propagation of a cylindrical wave, with or without ABC’s.

close the computational domain with successive layers, one
cell wide, incorporating electric and magnetic conductivities
(cf., Fig. 2). After many optimization steps, best results were
obtained with nine layers and the following relation:

In the SMM, use of very large conductivities increases
the oscillation behavior of the coefficients of the continued
fraction, and might introduce numerical instability of the so-
lution [4]. The above values present the best tradeoff between
tapering and efficiency of the layers on one hand, and stability
of the results on the other hand.

To observe ABC efficiency, the first curves are simulating
propagation of a cylindrical wave in free space. The domain is
a 0.2-m size square, the receiver and the source are located in
(0.05, 0.1). We can see in Fig. 3 that there is a total absorption
of the incident wave when the layers are present.

We wanted to check that, on a ringing target, the method
could account for weak resonances without generating spuri-
ous reflections; so the second result is the cylindrical wave
diffraction by a dielectric cylinder The cylinder
is at the center of the domain, and its radius is 0.015 m. In
order to validate the SMM for this case, we have compared
the result with the one obtained with the FDTD algorithm for
the same geometry. Fig. 4 shows the perfect agreement of the
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Fig. 4. Comparison between the spectral moments method and the FDTD
method.

two curves; the only signal here is due to the resonances of
the dielectric cylinder.

A convergence study of the continued fraction has shown
that a reasonable number of coefficients [4] was sufficient to
give a stable result. For the examples above, we needed 300
coefficients for the first case, and 1000 for the second one.

Notice that further optimization and systematic studies are
necessary to make serious comparison between the SMM and
the FDTD method efficiencies, particularly in the frequency
domain.

V. CONCLUSION

We have shown that it is possible to introduce ABC in the
SMM, and the results we obtain are very promising. We have
used simple ABC and demonstrated the ability of the method
to incorporate such boundary conditions. Consequently, others
could be introduced as well (PML for example).

Through this introduction, we have shown the validity of
the method on domains of reasonable size, and we can say
now that it is worth taking interest in the spectral moments
method application to propagation and diffraction problems.
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