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Introduction of Artificial Boundary Conditions
In the Spectral Moments Method

Elodie Bachelier, Gerard Poussigue, Pierre Borderies, and Claude Benoit

Abstract—The overall objective of this paper is to demonstrate describe the principle. The problem we want to solve at hand
the ability of the spectral moments method, a new method in js: assuming a dielectric media and an external source, what

electromagnetism, to incorporate absorbing boundary conditions. is the value of the electric field and of the magnetic field

This demonstration is done successfully with plane pulse propaga- . R . . o .
tion in free space, and through a comparison with finite-difference in a pointr” at time#? After spatial discretization and a simple

time-domain (FDTD) results. The very good agreement of the change of variables, Maxwell's equations can be expressed in
results leads to the conclusion that the spectral moments method the following form:
application for electromagnetic propagation and diffraction prob-

lems should be further investigated. a9xX o o
’ ot +iMX =-J

| INTRODUCTION where i = —1. The discretization grating is composed of

HIS letter deals with the application of a method calledy cells, Yisa6x N components vector representing the
“Spectral Moments Method” (SMM) to the simulationcomponents of the electric and magnetic fiefiland B at each
of electromagnetic wave propagation and diffraction. Thigode of the grid, and/ is a sparse matrix which corresponds
method is new in electromagnetism; it is a mixed methad the geometry of the problem. The sizeMfis 6 x IV, but in
which works both in time and in frequency domain an@ractice it is never stored totally” is a6 x N source vector.
directly gives the result for all frequencies and any incidentet us introduce the Green matri¥ solution of
pulse, and which can cope with very large computational ,
volumes. Previous works have shown the efficiency of this M
method when applied to electromagnetic problems, but still dt
the implementation of absorbing boundary conditions (ABC’syhere I is the identity matrix. After Fourier transform, we
had not been done in detail. This is the object of this papebtain in the frequency domain
After introducing the method in the first part, we present

+iMG(t —t') = =I6(t—t)

ABC. Then, the results of the implementation in free space G(w) = —i(wl — M)™L.
and a comparison with finite-difference time-domain (FDTD)r . )
are shown in the time domain. hen we can directly deduce the solution

X(w) =Gw) - J'(w)
Il. THE SPECTRAL MOMENTS METHOD

This numerical method, developed first in condensed matter! '€ Whole problem is then the computation of the Green
physics [1], [2], was recently successfully applied to th[émcnon G(w), which takes into account the boundary conQ|—
propagation simulation of acoustic waves in geophysics [éjpns of the system. The Fourier transform of a Green function
The mathematical basis of this method has been develop¥jWeen aa polarized response at the node and af
by Benoit [4]. First applications concerning electromagnetRo!arized source in the node is given by the matrix element
waves propagation in anisotropic media was presented by / . _1
Lakhliai [5]. Diffraction by a circular and square cylinder has Gapl(n,n'sw) = —illw = M) 5
recently been reported by Pou;sigue [6] and Chenouni [7].\we can prove thalG,s(n,n’,w) can be obtained from a

In the SMM, the space variables only are sampled, ap@ntinued fraction expansion versusand the coefficients of
getting the solution at any frequency requires only one Cofis expansion are directly calculated from the dynamic matrix
putation. It is based on determination of the exact Greeyy [2]. The problem is the convergence of this continued
function of the system and is mathematically equivalent §,ction: if there is no conductivity) is real and symmetric,

the Lanczos procedure, but much more general. The methagy a mathematical result [8] ensures this convergence; but
is widely developed in [4] and [5], so we will only succinctlyit there is some conductivity, thed/ is complex and no
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Fig. 2. Computational domain.
Fig. 1. Incident pulse.
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[ll. ABSORBING BOUNDARY CONDITIONS

A drawback of spatial discretization methods lies in the fact
that Maxwell's equations have to be solved in a discretized
domain whose size needs to be limited for memory purposes.
Nevertheless, open problems involving theoretically boundless
space extension can be solved when applying special con-
ditions on the boundaries of the computational domain, in
order to absorb outgoing waves. Many ABC's are available
in literature: perfectly matched layer method [9], Bayliss and
Turkel asymptotic operators method [10], etc. —o.15

For easy implementation, we use broadband Radar Absorb- on
ing Material, which consists of an addition of absorbing layers R ° A = .
all around the truncated domain, and we terminate with a
metallic wall. Maxwell's equations then become Fig. 3. Propagation of a cylindrical wave, with or without ABC’s.
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VxE=-""-pH VxH-= oD +oFE close the computational domain with successive layers, one
a ot cell wide, incorporating electric and magnetic conductivities
wherep and o are magnetic and electric conductivity, whicH(cf., Fig. 2). After many optimization steps, best results were
depends on position and are suchpas o - n*> wherey is the obtained with nine layers and the following relation:
intrinsic impgdance of the medium c_ontiguous to the ABC. oy =001 x n? wheren =1,---,9
We can easily show that these equations lead to the problem .

(X /ot) +iMX = —J treated above. The main difference P =0n 105

is that as we said in the previous sectia¥, is no longer  |n the SMM, use of very large conductivities increases
symmetric. Theory is then more complex [4], but it provideghe oscillation behavior of the coefficients of the continued
the same result: the solution is given BYw) = G(w)-J'(w) fraction, and might introduce numerical instability of the so-
whereG elements can be obtained from a continued fractiqgtion [4]. The above values present the best tradeoff between

expansion. tapering and efficiency of the layers on one hand, and stability
Now we study the numerical influence of such a change §f the results on the other hand.

the fraction coefficients stability, and the fraction convergenceTo observe ABC efficiency, the first curves are simulating

in this case. propagation of a cylindrical wave in free space. The domain is
a 0.2-m size square, the receiver and the source are located in

IV. RESULTS (0.05, 0.1). We can see in Fig. 3 that there is a total absorption
The source (Fig. 1) we use is a Rayleigh-like plane pul the |nC|de3t wa\;]e V\i/(hehn the layers are present.h hod
defined as follow in therOy plane [11]; We wanted to check that, on a ringing target, the metho

could account for weak resonances without generating spuri-

{f T N7 _ ous reflections; so the second result is the cylindrical wave
S(x,1) = Re 1| - (t - ;) +i) |where f=5GHz  giffraction by a dielectric cylindere, = 9). The cylinder

is at the center of the domain, and its radius is 0.015 m. In
Though all combinations of sources and detectors have bewder to validate the SMM for this case, we have compared

treated (plane or point), results we present here concern nahe result with the one obtained with the FDTD algorithm for
field detection, with a point source and a point receiver. Whe same geometry. Fig. 4 shows the perfect agreement of the
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«107 Through this introduction, we have shown the validity of
4 the method on domains of reasonable size, and we can say
3 now that it is worth taking interest in the spectral moments
N i method application to propagation and diffraction problems.
~ 14
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